https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability (DbC)
Support on FreeBSD, Revised

Hiroki Sato <hrs@FreeBSD.org>
BSDCan 2024 / 2024.5.31

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Outline

e Whoaml?

e A Japanese FreeBSD committer since 2000, working in
various areas

e Outline of This Talk

e Background
e USB Debug Capability
e High-level Overview
e USB Host/Device Controller Basics
e Pipes and Endpoints
e [RBs
e Implementation Details
e Demo and Future Work

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

e Debugging work using serial console:
e Remote access to a headless machine,
including firmware (BIOS/UEFI) configuration
e Device driver hacking
e Remote GDB session

Cross cable connection

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background

e Debugging work using serial console:
e Remote access to a headless machine,

including firmware (BIOS/UEFI) configuration
e Device driver hacking

e Remote GDB session

Cross cable connection

e No serial port on modern hardware,
however...

e Alegacy interface
e Server-grade machines have BMC with
"console redirection”
e BMC: baseboard management controller
e An embedded processor that runs
independently
e Provides virtual serial ports over IPMI
SoL (Serial-over-LAN, 623/udp)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background

e USBis the replacement of legacy
interfaces including the serial ports
e USB basically requires tiered star |
topology USB host
e No direct connection of USB hosts
is allowed

USB host

Host Root Hub

USB device USB device

USB device USB device

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability

e 1-sentence summary: USB DbC changes
one of the USB ports on a USB host for a

USB device w
e Not a point-to-point connection |
e An optional feature in USB 3.0

Specification
e Most of xHCI controllers support it

Host Root Hub

USB device USB device

USB device USB device

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

A-to-A Cable?

e A-to-A USB3 Cross Cable is required
No A-A for USB 2.0. Itis not allowed.
USB3 spec has five cables including A-A. A-A is always a

cross cable.

Note that non-standard A-A cables can be found in the

market.

5.5 Cable ASSEMDBIIES .o e e s e r e s n e en e 42
5.5.1 USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly.......ccccccereuencn. 42
5.5.2 USB 3.1 Standard-A to USB 3.1 Standard-A Cable Assemblyccccuruenn.e. 43
5.5.3 USB 3.1 Standard-A to USB 3.1 Micro-B Cable Assembly.......cccceccerrrrmrnunnn.e 44
5.5.4 USB 3.1 Micro-A to USB 3.1 Micro-B Cable Assemblyccceceriericenicenicernnnene 46
5.5.5 USB 3.1 Micro-A to USB 3.1 Standard-B Cable Assembly.......cccccerrerencn. 48

Reference: USB 3.1 Legacy Connector and Cable Specification

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Similar Technologies

o |EEE 1394 (FireWire) supports point-to-point connection
and physical memory access
e OHCI specification
e You can read/write memory
e dcons(4) is a serial communication driver using this
e Firewire is considered a legacy interface

e USB2.0 also supports debug capability signalName | U
e EHCI specification — :
e Requires a special repeater hardware o :
Type-A Type-A
2.0 2.0

By Nicola02nb - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=117668227

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Implementation Details

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Host/Device Controller Basics

e Serial communication over the legacy serial ports

Machine A Machine B

shift register A shift register B

Shift register to convert data into a pulse sequence

load the data onto the register

0 1 1 0 0 1 0 1 | == |0

A

output upon each
clock cycle

Clock

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Host/Device Controller Basics

e Serial communication over the legacy serial ports

Machine A Machine B

shift register A shift register B

Time
0 1.1 .0 01,01 0 0 0 0 0 0 0 O
0i0:1 1 0,010 1 0 0 0 0 0 0 O
0.0 0 1 1 0 0 T 0 1 0 0 0 0 0 0
0 0 00 1 1 0 0 1 0 1 0. 0.0 0 0
v

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Host/Device Controller Basics

e Serial communication over USB using xHCI

USB Device Controller

USB Host Controller

EP

TRB TRB

Pipe

TRB TRB

TRB TRB

TRB

array (basically)

TRB

TRB TRB

. xHCl uses ring buffers of TRBs (Transfer Request Block)
- Data on a TRB will be transferred to another end by the controllers.
. Multiple virtual serial communications are managed by EPs (End Point)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Host/Device Controller Basics

e TRB and ring structure

USB Host Controller 32-bit long

Buffer Address (High)

Buffer Address (Low)

poi Length / Status
Type / Flags
‘

- A 16-byte TRB for transfer holds a pointer
- Normal TRB type is used to specify data transfer
. Link TRB type can point another TRB as the next one
- A segmented TRB buffer helps when memory is non-contiguous

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Functions of USB DbC

e Avirtual "device-side" controller with the minimal functionality on one of the
ports on "host-side" controller:

e Two pipes: INand OUT

e SuperSpeed (5Gbps) at least.

e The max size of USB packet is 1024 bytes

e The host controller does not see the port after initialization

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Functions of USB DbC

e Avirtual "device-side" controller with the minimal functionality on one of the
ports on "host-side" controller:

e Two pipes: INand OUT

e SuperSpeed (5Gbps) at least.

e The max size of USB packet is 1024 bytes

e The host controller does not see the port after initialization

e No full USB stack is required
e After specifying addresses for TRB ring buffers of the two pipes, what you
have to do is to place your data into the ring buffer (or read it).

e getchar()/putchar() will be morethan "inb 0x3£8 + offset", but writing/
reading the TRB ring is still simple

e DbCis designed as a transport for more sophisticated debug feature, such as
JTAG and Intel DCI (exposing processor internal states and memory region)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Use Cases and Security Concerns

o Just like a legacy serial port:
e Console login access to headless servers
e DDB access
e Remote GDB

e There are a lot of "X over serial line", such as file
transfer, IP communication, and etc.

o Safer (in terms of security) than solutions using
Firewire or Thunderbolt, which exports access to bus
and memory. Same as a serial port at all.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC

e A normal USB3 stack is sufficient. No
DbC required.

e A clientdriveris required. This is

pecause the USB device has USB

Debug Class (Oxdc in the

olnterfaceClass field)

¢ On the Debug Host

Debug Target

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC

e A normal USB3 stack is sufficient. No)
DbC required. TE =)
udbc(4) driver for simple serial communication
necause the USB device has USB
Debug Class (Oxdc in the
olnterfaceClass field)

¢ On the Debug Host

5 D / .i‘d.l“‘i \\ O ‘\\7 J ! ”

Debug Target

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC

* On the Debug Host
e A normal USB3 stack is sufficient. No ‘

DbC required. | o(TRp N — o

udbc(4) driver for simple serial communication
necause the USB device has USB

Debug Class (Oxdc in the
olnterfaceClass field)

~7 \
/tg/ .i‘l.l“‘\‘ \O /—7 I

e On the Debug Target

e Activation of DbC is required.
e DbC has two endpoints (IN and OUT)

for bulk transfer

e TRB ring buffers for IN and OUT must
be allocated in memory (DMA will
handle them)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC

¢ On the Debug Host

e A normal USB3 stack is sufficient. No)
DbC required. TE =)
udbc(4) driver for simple serial communication
necause the USB device has USB
Debug Class (Oxdc in the
olnterfaceClass field) USB device

0 D / .i‘d.l“‘i \\O

e On the Debug Target

e Activation of DbC is required.
e DbC has two endpoints (IN and OUT)

- Console backend in the Ioader and the kernel

be allocated in memory (DMA will
handle them)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Enabling DbC on Target

o Extended capability ID=0x0a in PCI configuration space

e Configure the DbC register:
* Three TRB ring for Tx, Rx, and event handling

* TRB memory region for DMA

Figure 7-9: Debug Capability Register Layout

31 30 24 23 22 21 20 18 17 16 15 14 13 10 9 8 7 5 4 3 2 1 0
RsvdP DCERST Max Next Capability Pointer Capability ID = Debug Port 03-00H
RsvdZ DB Target RsvdZ 07-04H
RsvdZ Event Ring Segment Table Size 0B-08H
Rsvdz OF-0CH
Event Ring Segment Table Base Address Lo RsvdzZ 14-10H
Event Ring Segment Table Base Address Hi 17-14H
Event Ring Dequeue Pointer Lo RsvdZ 1B-18H
Event Ring Dequeue Pointer Hi 1F-1CH
|DCE Device Address Debug Max Burst Size RsvdP DRC| HIT|HOT|LSE|DCR| 23-20H
Debug Port Number RsvdP SBR| ER|| 27-24H
RsvdZ CEC|PLC|PRC| RsvdZz [csc| Rsvdz Port Speed |3 PLS PR| RsvdzZ |PED|cCS| 2B-28H
RsvdP 2F-2CH
Debug Capability Context Pointer Lo RsvdZ 33-30H
Debug Capability Context Pointer Hi 37-34H
Vendor ID RsvdZ DbC Protocol 3B-38H
Device Revision Product ID 3F-3CH

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework

e |n |Oader: struct console *consoles[] = {
&efi console,
&eficom,
&udb console,

, &comconsole,
stand/efi/loader/conf.c snullconsole,

&spinconsole,
NULL
};
OK set console=udb,efi
struct console udb console = {
.c_name = "udb",
.c desc = "USB DbC serial port",

.c:flags =0,

, .C probe udb probe,
stand/efi/loader/usb_dbc.c .C:Ii)nit _ udb_;ﬁit,
.c_out = udb putc,
.c_in = udb getc,
.c_ready = udb_ischar

}s
e udb_probe() -> udb_init(). c_in/c_out methods are used.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework

e |n kernel: static cn probe t xhci debug cnprobe;
static cn init t xhci debug cninit;
static cn _term t xhci debug cnterm;
static cn getc t xhci debug cngetc;

: static cn putc t xhci debug cnputc;
sys/dev/usb/controller/xhci.c static cn grab_t xhci_debug_cngrab;

static cn ungrab t xhci debug cnungrab;

const struct consdev_ops xhci debug cnops = {

.cn_probe = xhci debug cnprobe,
S conscontrol .cn_init = xhci debug cninit,
Configured: ttyv0,udbcons,gdb .cn_term = xhci debug cnterm,
Availak?le : udbcons, ttyv0,gdb . cn_getc = xhci_debug_cngetc ,
Muting: off .cn_putc = xhci_debug_ cnputc,
.cn_grab = xhci debug cngrab,

.cn_ungrab xhci debug cnungrab,

};

CONSOLE DRIVER (xhci debug) ;

e cninit() (kern/kern_cons.c) is called in MD init routines and
handle probing. cn_getc() and cn_putc() are used.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework

e |n kernel: static tsw_outwakeup t xhci debug tty outwakeup;

static struct ttydevsw xhci debug ttydevsw = {
.tsw_flags TF_NOPREFIX,
.tsw_outwakeup

xhci debug tty outwakeup,

};

sys/dev/usb/controller/xhci.c

5 1s -al /dev/udbcons cons->tp = tty alloc(&xhci debug ttydevsw,

Crw——————~- 1 root wheel 0x33 \ <cons);
May 31 23:00 /dev/udbcons tty makedev(cons->tp, NULL, "%s", UDBCONS NAME) ;

tty init console(cons->tp, 0);

callout init(&cons->callout, 1);
callout reset (&cons->callout, cons->polltime,
xhci debug timeout, cons->tp);

e /dev/udbcons is another entry point used by getty(8). tty_makedev() is
called during the DbC initialization. The callouts are for polling of data arrival.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Memory region for TRB

e Both loader and kernel need to access the same TRB rings.

e The memory region are initialized using UEFI service in loader.efi:

status = pci->Map(pci, EfiPciIoOperationBusMasterCommonBuffer,
(void *)virt, &mapped, &paddr, &mapping);

e |s this mapping valid (ore possible to reuse) even after kernel
loaded? The current code ignores and reconfigures it

completely.

e The XHClI register has physical address configured by the
loader and the kernel can read later.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Physical Setup

e A-to-A USB3 Cable between the two
e Onthe debug target, one of the
ports on Root Hub will become
USB device.
e This means that you have to find
ports associated with the Root Hub.
Any USB 2.0 ports do not work.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Physical Setup

e A-to-A USB3 Cable between the two
e Onthe debug target, one of the
ports on Root Hub will become
USB device.
e This means that you have to find
ports associated with the Root Hub.
Any USB 2.0 ports do not work.

e A-A cross cable + A-A extension + A-
C adapter + Beastie charm for 30
USD/40 CAD here. 6 sets are
available. Catch meif you are
interested in them.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Demo and Call for Test

e https://people.allbsd.org/~hrs/FreeBSD/udbc/20240531/
e udbc-kernel-14-20240531.tar.gz
e 14-stable kernel, including udbc(4) driver
e udbc-loader-14-20240531.tar.gz
e 14-stable loader (you need to use UEFI)
e udbc-src-14-20240531.tar.gz

e Source, still work in progress
e udbc-patch-14-58be9203662d0dd2072002ceb9a78c81bb64d3b3.20240531.diff

e Patch set against the branch point (58be9203...)

e A unidirectional communication test from Target to Host
e See README.udbc

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Demo and Call for Test

e Demo

MacBook

Debug Target

A-A Cable

PC (FreeBSD) FreeBSD VM on QEMU

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

TODOs and Future Work

e DONE
e Tested using 20 different machines and there seems good
availability. Bidirectional communication is also confirmed.

e udbc(4): almost commit ready

e udbconsole backend in UEFI loader
e Needs to reduce duplication with in-kernel xhci(4) driver

e /dev/udbcons except for putc()/getc() handler
e TRB memory region issue

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

TODOs and Future Work

e In progress and plan to complete in the next three weeks:
e Import working code for UEFI loader and kernel:
e Does enabling it by default make sense? If you do not connect
A-A cable, nothing happened. One of the USB ports can be used
for DbC only when the cable is attached.

e USB port or bus sometimes stall. Some countermeasures must be
implemented.

e Need help:

e More testing for USB-C connection. Flipping the mode from host to
device sometimes requires another insertion/removal cycle.

e Supportin non-UEFI loader.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Summary

e USB DbCis a feature to change one of the ports on a USB host for a
USB device.

e« The USB device has two EPs. You can receive/send any data over
the IN and OUT pipes (virtual serial channels).

e A-A USB3 cable is required (again, catch me you want one). 5Gbps
speed is supported at least.

e | need more information about device compatibility. Please try the
test and let me know your xHCI device id and if it works or not.

Questions/Comments/Suggestions?

Please send your feedback to hrs@FreeBSD.org

