
https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability (DbC)
Support on FreeBSD, Revised

Hiroki Sato <hrs@FreeBSD.org>
BSDCan 2024 / 2024.5.31

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Outline
• Who am I?

• A Japanese FreeBSD committer since 2000, working in
various areas

• Outline of This Talk

• Background
• USB Debug Capability

• High-level Overview
• USB Host/Device Controller Basics

• Pipes and Endpoints
• TRBs

• Implementation Details
• Demo and Future Work

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background
• Debugging work using serial console:

• Remote access to a headless machine,
including firmware (BIOS/UEFI) configuration

• Device driver hacking
• Remote GDB session

Cross cable connection

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background
• Debugging work using serial console:

• Remote access to a headless machine,
including firmware (BIOS/UEFI) configuration

• Device driver hacking
• Remote GDB session

• No serial port on modern hardware,
however...
• A legacy interface
• Server-grade machines have BMC with

"console redirection"
• BMC: baseboard management controller

• An embedded processor that runs
independently

• Provides virtual serial ports over IPMI
SoL (Serial-over-LAN, 623/udp)

Cross cable connection

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Background
• USB is the replacement of legacy

interfaces including the serial ports
• USB basically requires tiered star

topology
• No direct connection of USB hosts

is allowed ❌

Host Root Hub

USB deviceUSB device Hub

USB deviceUSB device

USB host

USB host

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Debug Capability
• 1-sentence summary: USB DbC changes

one of the USB ports on a USB host for a
USB device
• Not a point-to-point connection
• An optional feature in USB 3.0

Specification
• Most of xHCI controllers support it

USB host

USB device

Host Root Hub

USB deviceUSB device Hub

USB deviceUSB device

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

A-to-A Cable?
• A-to-A USB3 Cross Cable is required

• No A-A for USB 2.0. It is not allowed.
• USB3 spec has five cables including A-A. A-A is always a

cross cable.
• Note that non-standard A-A cables can be found in the

market.

Reference: USB 3.1 Legacy Connector and Cable Specification

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Similar Technologies
• IEEE 1394 (FireWire) supports point-to-point connection

and physical memory access
• OHCI specification
• You can read/write memory
• dcons(4) is a serial communication driver using this
• Firewire is considered a legacy interface

• USB2.0 also supports debug capability
• EHCI specification
• Requires a special repeater hardware

Type-A
2.0

4321

By Nicola02nb - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=117668227

Type-A
2.0

4321

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Implementation Details

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

USB Host/Device Controller Basics

• Serial communication over the legacy serial ports

Shift register to convert data into a pulse sequence

Machine A Machine B

0 1 1 0 0 1 0 1

0x65

Clock

load the data onto the register

output upon each
clock cycle

0

shift register A shift register B

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

• Serial communication over the legacy serial ports

Machine A Machine B

shift register A shift register B

0 1 1 0 0 1 0 1

Time

0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

USB Host/Device Controller Basics

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

• Serial communication over USB using xHCI

USB Host Controller USB Device Controller

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

• xHCI uses ring buffers of TRBs (Transfer Request Block)
• Data on a TRB will be transferred to another end by the controllers.
• Multiple virtual serial communications are managed by EPs (End Point)

EP EP

Pipe

USB Host/Device Controller Basics
ar

ra
y

(b
as

ic
al

ly
)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

• TRB and ring structure

TRB

TRB

TRB

TRB

Link TRB

• A 16-byte TRB for transfer holds a pointer
• Normal TRB type is used to specify data transfer
• Link TRB type can point another TRB as the next one

• A segmented TRB buffer helps when memory is non-contiguous

Buffer Address (High)

Buffer Address (Low)

Length / Status

32-bit long

Type / Flags

USB Host Controller

USB Host/Device Controller Basics

deq pointer

enq pointer

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Functions of USB DbC
• A virtual "device-side" controller with the minimal functionality on one of the

ports on "host-side" controller:

• Two pipes: IN and OUT
• SuperSpeed (5Gbps) at least.
• The max size of USB packet is 1024 bytes
• The host controller does not see the port after initialization

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Functions of USB DbC
• A virtual "device-side" controller with the minimal functionality on one of the

ports on "host-side" controller:

• Two pipes: IN and OUT
• SuperSpeed (5Gbps) at least.
• The max size of USB packet is 1024 bytes
• The host controller does not see the port after initialization

• No full USB stack is required
• After specifying addresses for TRB ring buffers of the two pipes, what you

have to do is to place your data into the ring buffer (or read it).

• getchar()/putchar() will be more than "inb 0x3f8 + offset", but writing/
reading the TRB ring is still simple

• DbC is designed as a transport for more sophisticated debug feature, such as
JTAG and Intel DCI (exposing processor internal states and memory region)

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Use Cases and Security Concerns
• Just like a legacy serial port:

• Console login access to headless servers

• DDB access

• Remote GDB

• There are a lot of "X over serial line", such as file
transfer, IP communication, and etc.

• Safer (in terms of security) than solutions using
Firewire or Thunderbolt, which exports access to bus
and memory. Same as a serial port at all.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC
• On the Debug Host

• A normal USB3 stack is sufficient. No
DbC required.

• A client driver is required. This is
because the USB device has USB
Debug Class (0xdc in the
bInterfaceClass field)

USB host

USB device

Debug Target

Debug Host

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC
• On the Debug Host

• A normal USB3 stack is sufficient. No
DbC required.

• A client driver is required. This is
because the USB device has USB
Debug Class (0xdc in the
bInterfaceClass field)

USB host

USB device

Debug Target

Debug Host

udbc(4) driver for simple serial communication

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC
• On the Debug Host

• A normal USB3 stack is sufficient. No
DbC required.

• A client driver is required. This is
because the USB device has USB
Debug Class (0xdc in the
bInterfaceClass field)

• On the Debug Target
• Activation of DbC is required.
• DbC has two endpoints (IN and OUT)

for bulk transfer
• TRB ring buffers for IN and OUT must

be allocated in memory (DMA will
handle them)

USB host

USB device

Debug Target

Debug Host

udbc(4) driver for simple serial communication

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Software Components for DbC
• On the Debug Host

• A normal USB3 stack is sufficient. No
DbC required.

• A client driver is required. This is
because the USB device has USB
Debug Class (0xdc in the
bInterfaceClass field)

• On the Debug Target
• Activation of DbC is required.
• DbC has two endpoints (IN and OUT)

for bulk transfer
• TRB ring buffers for IN and OUT must

be allocated in memory (DMA will
handle them)

USB host

USB device

Debug Target

Debug Host

udbc(4) driver for simple serial communication

Console backend in the loader and the kernel

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Enabling DbC on Target
• Extended capability ID=0x0a in PCI configuration space

• Configure the DbC register:
・Three TRB ring for Tx, Rx, and event handling

・TRB memory region for DMA

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework
• In loader: struct console *consoles[] = {

 &efi_console,
 &eficom,
 &udb_console,
 &comconsole,
 &nullconsole,
 &spinconsole,
 NULL
};

struct console udb_console = {
 .c_name = "udb",
 .c_desc = "USB DbC serial port",
 .c_flags = 0,
 .c_probe = udb_probe,
 .c_init = udb_init,
 .c_out = udb_putc,
 .c_in = udb_getc,
 .c_ready = udb_ischar
};

stand/efi/loader/conf.c

stand/efi/loader/usb_dbc.c

• udb_probe() -> udb_init(). c_in/c_out methods are used.

OK set console=udb,efi

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework
• In kernel: static cn_probe_t xhci_debug_cnprobe;

static cn_init_t xhci_debug_cninit;
static cn_term_t xhci_debug_cnterm;
static cn_getc_t xhci_debug_cngetc;
static cn_putc_t xhci_debug_cnputc;
static cn_grab_t xhci_debug_cngrab;
static cn_ungrab_t xhci_debug_cnungrab;

const struct consdev_ops xhci_debug_cnops = {
 .cn_probe = xhci_debug_cnprobe,
 .cn_init = xhci_debug_cninit,
 .cn_term = xhci_debug_cnterm,
 .cn_getc = xhci_debug_cngetc,
 .cn_putc = xhci_debug_cnputc,
 .cn_grab = xhci_debug_cngrab,
 .cn_ungrab = xhci_debug_cnungrab,
};

CONSOLE_DRIVER(xhci_debug);

sys/dev/usb/controller/xhci.c

• cninit() (kern/kern_cons.c) is called in MD init routines and
handle probing. cn_getc() and cn_putc() are used.

% conscontrol
Configured: ttyv0,udbcons,gdb
 Available: udbcons,ttyv0,gdb
 Muting: off

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

FreeBSD Console Framework
• In kernel: static tsw_outwakeup_t xhci_debug_tty_outwakeup;

static struct ttydevsw xhci_debug_ttydevsw = {
 .tsw_flags = TF_NOPREFIX,
 .tsw_outwakeup =
xhci_debug_tty_outwakeup,
};

...

cons->tp = tty_alloc(&xhci_debug_ttydevsw,
cons);
tty_makedev(cons->tp, NULL, "%s", UDBCONS_NAME);
 tty_init_console(cons->tp, 0);
....

callout_init(&cons->callout, 1);
callout_reset(&cons->callout, cons->polltime,
 xhci_debug_timeout, cons->tp);

sys/dev/usb/controller/xhci.c

• /dev/udbcons is another entry point used by getty(8). tty_makedev() is
called during the DbC initialization. The callouts are for polling of data arrival.

% ls -al /dev/udbcons
crw------- 1 root wheel 0x33 \
 May 31 23:00 /dev/udbcons

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Memory region for TRB

• The memory region are initialized using UEFI service in loader.efi:

status = pci->Map(pci, EfiPciIoOperationBusMasterCommonBuffer,
 (void *)virt, &mapped, &paddr, &mapping);

• The XHCI register has physical address configured by the
loader and the kernel can read later.

• Is this mapping valid (ore possible to reuse) even after kernel
loaded? The current code ignores and reconfigures it
completely.

• Both loader and kernel need to access the same TRB rings.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Physical Setup

• A-to-A USB3 Cable between the two
• On the debug target, one of the

ports on Root Hub will become
USB device.

• This means that you have to find
ports associated with the Root Hub.
Any USB 2.0 ports do not work.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Physical Setup

• A-to-A USB3 Cable between the two
• On the debug target, one of the

ports on Root Hub will become
USB device.

• This means that you have to find
ports associated with the Root Hub.
Any USB 2.0 ports do not work.

• A-A cross cable + A-A extension + A-
C adapter + Beastie charm for 30
USD/40 CAD here. 6 sets are
available. Catch me if you are
interested in them.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Demo and Call for Test
• https://people.allbsd.org/~hrs/FreeBSD/udbc/20240531/

• udbc-kernel-14-20240531.tar.gz
• 14-stable kernel, including udbc(4) driver

• udbc-loader-14-20240531.tar.gz
• 14-stable loader (you need to use UEFI)

• udbc-src-14-20240531.tar.gz
• Source, still work in progress

• udbc-patch-14-58be9203662d0dd2072002ceb9a78c81bb64d3b3.20240531.diff
• Patch set against the branch point (58be9203...)

• A unidirectional communication test from Target to Host
• See README.udbc

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

MacBook

Demo and Call for Test
• Demo

PC (FreeBSD) FreeBSD VM on QEMU

Debug Target Debug Host

A-A Cable

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

TODOs and Future Work
• DONE

• Tested using 20 different machines and there seems good
availability. Bidirectional communication is also confirmed.

• udbc(4): almost commit ready

• udbconsole backend in UEFI loader
• Needs to reduce duplication with in-kernel xhci(4) driver

• /dev/udbcons except for putc()/getc() handler
• TRB memory region issue

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

TODOs and Future Work
• In progress and plan to complete in the next three weeks:

• Import working code for UEFI loader and kernel:
• Does enabling it by default make sense? If you do not connect

A-A cable, nothing happened. One of the USB ports can be used
for DbC only when the cable is attached.

• USB port or bus sometimes stall. Some countermeasures must be
implemented.

• Need help:

• More testing for USB-C connection. Flipping the mode from host to
device sometimes requires another insertion/removal cycle.

• Support in non-UEFI loader.

https://people.allbsd.org/~hrs/FreeBSD/udbc/sato-20240531-usbdbc.pdf

Questions/Comments/Suggestions?
Please send your feedback to hrs@FreeBSD.org

Summary
• USB DbC is a feature to change one of the ports on a USB host for a

USB device.

• The USB device has two EPs. You can receive/send any data over
the IN and OUT pipes (virtual serial channels).

• A-A USB3 cable is required (again, catch me you want one). 5Gbps
speed is supported at least.

• I need more information about device compatibility. Please try the
test and let me know your xHCI device id and if it works or not.

